METALLORGANISCHE LEWIS-BASEN

XVIII*. KRISTALLSTRUKTUR VON $Fe_2(CO)_5C_5H_5P(CH_3)_2$, EINEM KOMPLEX MIT METALL-METALL-BINDUNG, CARBONYL- UND PHOSPHIN-BRÜCKE

HEINRICH VAHRENKAMP Institut für Anorganische Chemie der Universität Munchen (Deutschland) (Eingegangen den 3 April 1973)

SUMMARY

Cyclopentadienyl(carbonyl)iron (μ -dimethylphosphide, μ -carbonyl)tricarbonyliron, Fe₂(CO)₅C₅H₅P(CH₃)₂, (I), crystallizes in the monoclinic space group P2₁/c with 8 molecules in the unit cell. The two independent molecules of (I) are nearly identical. They consist of a Fe-P-Fe-C framework with an iron-iron bond of 2.615 (2.638) Å length. The phosphine bridge (Fe-P (average) 2.194 Å) and the carbonyl bridge (Fe-C (average) 1.93 Å) are approximately symmetrical.

ZUSAMMENFASSUNG

Cyclopentadienyl (carbonyl)eisen (μ -dimethylphosphid, μ -carbonyl)tricarbonyleisen, Fe₂(CO)₅C₅H₅P(CH₃)₂, (I), kristallisiert in der monoklinen Raumgruppe $P2_1/c$ mit 8 Molekülen in der Elementarzelle Die zwei unabhängigen Moleküle von (I) sind nahezu identisch Sie bestehen aus einem Fe-P-Fe-C-Gerüst mit einer Eisen-Eisen-Bindung von 2.615 (2.638) Å Länge. Die Phosphin-Brücke (Fe-P (Durchschnitt) 2.194 Å) und die Carbonyl-Brücke (Fe-C) Durchschnitt (1.93 Å) sind annähernd symmetrisch.

EINLEITUNG

Durch Photolyse einfach basenverbrückter Metall-Carbonyl-Zweikernkomplexe lassen sich Komplexe gewinnen, in denen eine Hetero-Metall-Metall-Bindung von einer Phosphino- oder Arsino-Gruppe überspannt wird Dies haben wir für den Fall des pseudosymmetrischen Komplexes $(CO)_4 Mn[\mu-As(CH_3)_2]Fe(CO)_4$ durch Kristallstrukturanalyse bewiesen². Bei der Photolyse der Verbindung $(CO)_4$ -Fe-P(CH_3)_2-Fe(CO)_2C_5H_5 entsteht dagegen der Komplex Fe_2(CO)_5C_5H_5P(CH_3)_2 (I), der nach Aussage seines IR-Spektrums neben der Phosphin- noch eine CO-Brücke

^{*} Fur XVII Mitteilung siehe Ref 1

enthält¹. Da kaum Zweikernkomplexe mit zwei verschiedenen Brückenliganden bekannt sind, war es reizvoll, die Struktur von (I) röntgenographisch zu bestimmen

DATENSAMMLUNG UND LÖSUNG DER STRUKTUR

Kristalle von (I) wurden duch Umlösen aus einer Benzol/Hexan-Mischung gewonnen¹. Sie sind schwertförmig und meist sehr klein Von einem Kristall der ungefähren Grösse $0.13 \times 0.32 \times 0.70$ mm wurden auf dem Siemens-AED-Diffraktometer aus 60 sorgfältig lokalisierten Reflexen die Gitterkonstanten bestimmt. Sie sind *a* 7.124 ± 0.001 , *b* 29.610 ± 0.007 , *c* 14.732 ± 0.002 Å, β 109 $38 \pm 0.01^{\circ}$. Die damit für 8 Formeleinheiten von (I) in der Elementarzelle berechnete Dichte von 1 70 g·cm⁻³ entspricht der gefundenen von 1.71 g·cm⁻³. Systematische Auslöschungen für ungerade *k* bei 0k0 und für ungerade *l* bei *k0l* legten eindeutig die Raumgruppe $P_{2,1}/c$ fest

Nach der 5-Punkt-Methode wurden bis zu einem θ -Wert von 22° 3642 unabhängige Reflexe vermessen. Eine experimentelle Absorptionskorrektur wurde durch Vermessen von 30 Reflexen mit $\chi \approx 90^{\circ}$ vorgenommen. Die so ermittelte Korrekturfunktion wurde auf alle Daten angewendet

Wegen der relativ grossen Zahl von schweren Atomen in der asymmetrischen Einheit wurde die Struktur mit Direkt-Methoden gelöst Es konnten so die Lagen aller Eisen- und Phosphoratome gefunden werden. Die anschliessenden Rechnungen wurden mit den 2365 Reflexen ausgeführt, deren Untergrund-Peak-Verhältnis kleiner als 0.6 war. Eine mit den Eisen- und Phosphor-Atomen phasierte Fourier-Synthese zeigte die Lage aller anderen Atome Kleinste Quadrate-Verfeinerungen wurden zunächst mit der Blockmatrix-Näherung ausgeführt. Gegen Ende wurden die Blöcke dann bis zur Vollmatrix vergrössert.

Die Verfeinerung konvergierte bei einem R-Wert von 5.4%, wobei für die schweren Atome anisotrope Temperaturfaktoren verwendet wurden Auf eine Lokalisierung von Wasserstoffatomen wurde verzichtet. In der abschliessenden Differenz-Fourier-Synthese waren die Extremwerte der Elektronendichte kleiner als +0.7und $-0.5 e/Å^3$.

Die Strukturfaktorliste ist auf Wunsch beim Autor erhältlich.

BESCHREIBUNG DER STRUKTUR

(I) hat die angenommene Molekülstruktur mit einer CO- und einer Phosphin-Brücke. Die Abbildung zeigt eine Projektion der Moleküle Die Tabellen 1-4 geben die Atomparameter, Bindungslängen, Bindungswinkel und Ebenenberechnungen wieder

Da die asymmetrische Einheit der Elementarzelle von (I) zwei Moleküle enthält, wurde die Struktur von (I) doppelt bestimmt. Wie die Tabellen jedoch zeigen, sind sämtliche Parameter für beide Moleküle so ähnlich, dass sich eine separate Diskussion nicht lohnt. Vielmehr geben die Unterschiede einzelner Atomabstände und Atomwinkel ein eindrucksvolles Bild davon, wie stark molekulare Parameter im Kristall durch Packungseffekte zu beeinflussen sind

(I) vereinigt zwei verschieden koordinierte Metallatome in einem Zweikernkomplex mit Metall-Metall-Bindung. Das Molekül enthält keinerlei Symmetrieelement. Die Koordinationsgeometrie der beiden Eisenatome ist nur näherungsweise

TABELLE 1,	ATOMARE	PARAMETER	VON (I)

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Atom	X	Y	Z	В
$\begin{array}{ccccc} Fe(11) & 0.9115(2) & 0.23575(5) & 0.2078(1) & a \\ Fe(12) & 0.9729(2) & 0.31400(5) & 0.1404(1) & a \\ P(1) & 1.0163(4) & 0.29787(9) & 0.2907(2) & a \\ C(111) & 0.8760(17) & 0.3256(4) & 0.3577(8) & 4.5(2) \\ C(112) & 1.2703(18) & 0.2997(4) & 0.3794(9) & 4.7(2) \\ C(11) & 0.6954(14) & 0.1735(3) & 0.0553(7) & 6.4(2) \\ C(12) & 1.080(17) & 0.1995(4) & 0.2857(8) & 4.3(2) \\ C(12) & 1.080(17) & 0.1995(4) & 0.2857(8) & 4.3(2) \\ C(12) & 1.080(17) & 0.1995(4) & 0.2857(8) & 4.3(2) \\ C(13) & 0.6972(17) & 0.2367(4) & 0.2441(8) & 4.4(2) \\ O(13) & 0.5588(14) & 0.2354(4) & 0.2684(7) & 6.4(2) \\ C(14) & 1.0612(16) & 0.2528(4) & 0.1261(7) & 3.8(2) \\ O(14) & 1.1538(13) & 0.2364(3) & 0.0799(6) & 5.6(2) \\ C(15) & 1.2157(18) & 0.3293(4) & 0.1754(8) & 4.5(2) \\ O(15) & 1.3812(14) & 0.3423(3) & 0.1978(6) & 6.4(2) \\ C(16) & 0.7671(21) & 0.3127(5) & 0.0009(10) & 6.1(3) \\ C(17) & 0.6597(19) & 0.3199(4) & 0.0644(9) & 5.2(3) \\ C(18) & 0.7335(18) & 0.3610(4) & 0.1136(8) & 4.6(2) \\ C(110) & 0.9003(22) & 0.3470(5) & 0.0077(11) & 6.6(3) \\ \end{array}$ $\begin{array}{c} Molekul 2 \\ Fe(21) & 0.5951(2) & 0.48275(5) & 0.3258(1) & a \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & a \\ P(2) & 0.6611(4) & 0.54102(9) & 0.1897(2) & a \\ C(211) & 0.8924(19) & 0.5434(5) & 0.1599(9) & 5.4(3) \\ C(212) & 0.4771(19) & 0.5608(4) & 0.0776(9) & 5.3(3) \\ C(21) & 0.5743(21) & 0.4420(5) & 0.3475(10) & 6.2(3) \\ O(21) & 0.5743(21) & 0.4420(5) & 0.3475(10) & 6.2(3) \\ O(21) & 0.5743(21) & 0.4420(5) & 0.3475(10) & 5.4(3) \\ C(22) & 0.4018(19) & 0.4653(5) & 0.1713(10) & 5.4(3) \\ O(22) & 0.2643(17) & 0.4432(3) & 0.2810(7) & 6.4(2) \\ C(24) & 0.4618(16) & 0.5198(4) & 0.3778(8) & 4.4(2) \\ C(23) & 0.8337(18) & 0.598(4) & 0.2787(8) & 4.4(2) \\ C(24) & 0.4618(16) & 0.5198(4) & 0.3321(8) & 3.8(2) \\ O(25) & 0.4420(18) & 0.598(4) & 0.2266(7) & 6.3(2) \\ C(25) & 0.4420(18) & 0.598(4) & 0.4256(9) & 4.6(2) \\ C(25) & 0.4420(18) & 0.598(4) & 0.4256(9) & 4.6(2) \\ C(25) & 0.4420(18) & 0.598(4) & 0.4256(9) & 4.6(2) \\ C(25) & 0.4420(18) & 0.598(4) & 0.4256(9) & 4.6(2) \\ C(25) & 0.938(18) & 0.5548(4) & 0.4256(9) $	Molekul 1				
$\begin{array}{cccccc} Fe(12) & 0.9729(2) & 0.31400(5) & 0.1404(1) & * \\ P(1) & 1.0163(4) & 0.29787(9) & 0.2907(2) & * \\ C(111) & 0.8760(17) & 0.3256(4) & 0.3577(8) & 4.5(2) \\ C(112) & 1.2703(18) & 0.2997(4) & 0.3794(9) & 4.7(2) \\ C(11) & 0.7827(17) & 0.1993(4) & 0.1146(8) & 4.1(2) \\ O(11) & 0.6954(14) & 0.1735(3) & 0.0553(7) & 6.4(2) \\ C(12) & 1.0801(17) & 0.1995(4) & 0.2857(8) & 4.3(2) \\ O(12) & 1.1931(15) & 0.1745(4) & 0.3396(7) & 7.0(2) \\ C(13) & 0.6972(17) & 0.2367(4) & 0.2441(8) & 4.4(2) \\ O(13) & 0.5588(14) & 0.2354(4) & 0.2684(7) & 6.4(2) \\ C(14) & 1.0612(16) & 0.2528(4) & 0.1261(7) & 3.8(2) \\ O(14) & 1.1538(13) & 0.2364(3) & 0.0799(6) & 5.6(2) \\ C(15) & 1.2157(18) & 0.3293(4) & 0.1754(8) & 4.5(2) \\ O(15) & 1.3812(14) & 0.3423(3) & 0.1978(6) & 6.4(2) \\ C(16) & 0.7671(21) & 0.3127(5) & 0.0009(10) & 6.1(3) \\ C(17) & 0.6597(19) & 0.3199(4) & 0.0644(9) & 5.2(3) \\ C(18) & 0.7335(18) & 0.3610(4) & 0.1136(8) & 4.6(2) \\ C(19) & 0.8829(18) & 0.3779(4) & 0.0822(8) & 4.6(2) \\ C(110) & 0.9003(22) & 0.3470(5) & 0.0771(1) & 6.6(3) \\ \hline \end{tabular} Molekul 2 \\ Fe(21) & 0.5951(2) & 0.48275(5) & 0.2678(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(21) & 0.5951(2) & 0.48275(5) & 0.2678(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ Fe(22) & 0.6483(2) & 0.56752(6) & 0.3258(1) & * \\ C(211) & 0.5647(17) & 0.4130(4) & 0.4017(8) & 8.4(3) \\ C(22) & 0.4018(19) & 0.4653(5) & 0.1713(10) & 5.4(3) \\ O(22) & 0.2643(17) & 0.4530(5) & 0.1713(10) & 5.4(3) \\ O(23) & 0.807(15) & 0.4432(3) & 0.2810(7) & 6.4(2) \\ C(24) & 0.4518(16) & 0.5198(4) & 0.3368(6) & 5.4(4) \\ O(25) & 0.2972(14) & 0.6203(3) & 0.266(7) & 6.3(2) \\ C(26) & 0.7$	Fe(11)	0 9115(2)	0 23575(5)	0 2078(1)	a
$\begin{array}{c ccccc} P(1) & 1 0163(4) & 0.29787(9) & 0 2907(2) & * \\ C(111) & 0 8760(17) & 0 3256(4) & 0 3577(8) & 4 5(2) \\ C(112) & 1 2703(18) & 0 2997(4) & 0 3794(9) & 4 7(2) \\ C(11) & 0 7827(17) & 0 1993(4) & 0 1146(8) & 4 1(2) \\ O(11) & 0 6954(14) & 0 1735(3) & 0 0553(7) & 6 4(2) \\ C(12) & 1 0801(17) & 0 1995(4) & 0 2857(8) & 4 3(2) \\ O(12) & 1 1931(15) & 0.1745(4) & 0 3396(7) & 7 0(2) \\ C(13) & 0 6972(17) & 0 2367(4) & 0 2441(8) & 4 4(2) \\ O(13) & 0 5588(14) & 0 2354(4) & 0 2684(7) & 6 4(2) \\ O(14) & 1 0512(16) & 0 2528(4) & 0.1261(7) & 3 8(2) \\ O(14) & 1 1538(13) & 0 2364(3) & 0 0799(6) & 5 6(2) \\ C(15) & 1 2157(18) & 0 3293(4) & 0 1754(8) & 4 5(2) \\ O(15) & 1 3812(14) & 0 3423(3) & 0 1978(6) & 6 4(2) \\ C(16) & 0 7671(21) & 0 3127(5) & 0 0009(10) & 6 1(3) \\ C(17) & 0 6597(19) & 0 3199(4) & 0 6644(9) & 5 2(3) \\ C(18) & 0 7335(18) & 0 3610(4) & 0.1136(8) & 4 6(2) \\ C(19) & 0 8829(18) & 0 3779(4) & 0.0822(8) & 4 6(2) \\ C(110) & 0 9003(22) & 0 3470(5) & 0 0077(11) & 6 6(3) \\ \hline Molekul 2 \\ Fe(21) & 0 5951(2) & 0.48275(5) & 0 2678(1) & * \\ Fe(22) & 0 6481(2) & 0 56732(6) & 0 3258(1) & * \\ P(2) & 0 6611(4) & 0 54102(9) & 0 1897(2) & * \\ C(211) & 0 8824(19) & 0 5434(5) & 0 1599(9) & 5 4(3) \\ C(212) & 0 4771(19) & 0 5608(4) & 0 0776(9) & 5 3(3) \\ C(21) & 0 5743(21) & 0 4420(5) & 0 3475(10) & 6 2(3) \\ O(22) & 0 2643(17) & 0 4430(3) & 0 2810(7) & 6 4(3) \\ C(23) & 0 9807(15) & 0 4432(3) & 0 2810(7) & 6 4(2) \\ C(24) & 0 4331(8) & 0 5198(4) & 0 2378(8) & 4 4(2) \\ O(23) & 0 9807(15) & 0 4432(3) & 0 2810(7) & 6 4(2) \\ C(24) & 0 4331(3) & 0 5138(3) & 0 3698(6) & 5 4(2) \\ C(25) & 0 2972(14) & 0 6203(3) & 0 2266(7) & 6 3(2) \\ C(26) & 0 7941(18) & 0 5603(4) & 0 4748(9) & 4 6(2) \\ C(27) & 0 9368(18) & 0 5548(4) & 0 2552(9) & 4 6(2) \\ C(29) & 0 7993(19) & 0 6255(4) & 0 3921(9) & 5 1(3) \\ C(20) & 0 7989(19) & 0 6255(4) & 0 3921(9) & 5 1(3) \\ C(20) & 0 7989(19) & 0 6255(4) & 0 3921(9) & 5 1(3) \\ C(20) & 0 7989(19) & 0 6255(4) & 0 3721(9) & 5 1(3) \\ C(20) & 0 7989(19) & 0 6255(4) & 0 3721(9) & 5 1(3) \\ C(20) & 0 7989(19) & 0 6255(4) & 0 $	Fe(12)	0 9729(2)	0 31400(5)	0 1404(1)	a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(1)	1 0163(4)	0.29787(9)	0 2907(2)	a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(111)	0 8760(17)	0 3256(4)	0 3577(8)	4 5(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(112)	1 2703(18)	0 2997(4)	0 3794(9)	4 7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(11)	0 7827(17)	0 1993(4)	0 1146(8)	4 1(2)
$\begin{array}{ccccccc} C(12) & 1 \ 0801(17) & 0 \ 1995(4) & 0 \ 2857(8) & 4 \ 3(2) \\ O(12) & 1 \ 1931(15) & 0.1745(4) & 0 \ 3396(7) & 7 \ 0(2) \\ C(13) & 0 \ 6972(17) & 0 \ 2367(4) & 0 \ 2441(8) & 4 \ 4(2) \\ O(13) & 0 \ 5588(14) & 0 \ 2354(4) & 0 \ 2684(7) & 6 \ 4(2) \\ C(14) & 1 \ 0612(16) & 0 \ 2528(4) & 0.1261(7) & 3 \ 8(2) \\ O(14) & 1 \ 1538(13) & 0 \ 2364(3) & 0 \ 0799(6) & 5 \ 6(2) \\ C(15) & 1 \ 2157(18) & 0 \ 3293(4) & 0 \ 1754(8) & 4 \ 5(2) \\ O(15) & 1 \ 3812(14) & 0 \ 3423(3) & 0 \ 1978(6) & 6 \ 4(2) \\ C(16) & 0 \ 7671(21) & 0 \ 3127(5) & 0 \ 0009(10) & 6 \ 1(3) \\ C(17) & 0 \ 6597(19) & 0 \ 3199(4) & 0 \ 0644(9) & 5 \ 2(3) \\ C(18) & 0.7335(18) & 0 \ 3610(4) & 0.1136(8) & 4 \ 6(2) \\ C(19) & 0 \ 8829(18) & 0 \ 3779(4) & 0.0822(8) & 4 \ 6(2) \\ C(110) & 0 \ 9003(22) & 0 \ 3470(5) & 0 \ 0077(11) & 6 \ 6(3) \\ \end{array}$ $\begin{array}{c} Molekul 2 \\ Fe(21) & 0 \ 5951(2) & 0.48275(5) & 0 \ 2678(1) & a \\ Fe(22) & 0 \ 6483(2) & 0 \ 56752(6) & 0 \ 3228(1) & a \\ P(2) & 0 \ 6611(4) & 0 \ 54102(9) & 0 \ 1897(2) & a \\ C(211) & 0 \ 8924(19) & 0 \ 5433(5) & 0 \ 1599(9) & 5 \ 4(3) \\ C(211) & 0 \ 8924(19) & 0 \ 5608(4) & 0 \ 0776(9) & 5 \ 3(3) \\ C(21) & 0 \ 5743(21) & 0 \ 4420(5) & 0 \ 3475(10) & 6 \ 2(3) \\ O(21) & 0 \ 5647(17) & 0 \ 4130(4) & 0 \ 4017(8) & 8 \ 4(3) \\ C(22) & 0 \ 4018(19) & 0 \ 4653(5) & 0 \ 1713(10) & 5 \ 4(3) \\ O(23) & 0 \ 8337(18) & 0 \ 4598(4) & 0 \ 2787(8) & 4 \ 4(2) \\ O(23) & 0 \ 807(15) & 0 \ 4432(3) & 0 \ 2810(7) & 6 \ 4(2) \\ C(24) & 0 \ 3338(13) & 0 \ 5138(3) & 0.3698(6) & 5 \ 4(2) \\ C(25) & 0 \ 4420(18) & 0 \ 5988(4) & 0 \ 2252(9) & 4 \ 6(2) \\ O(24) & 0 \ 3338(13) & 0 \ 5138(3) & 0.3698(6) & 5 \ 4(2) \\ C(26) & 0 \ 7941(18) & 0 \ 5603(4) & 0 \ 4748(9) & 4 \ 6(2) \\ C(27) & 0 \ 9388(19) & 0 \ 5548(4) & 0 \ 3226(7) & 6 \ 3(2) \\ C(26) & 0 \ 7941(18) & 0 \ 5603(4) & 0 \ 4748(9) & 4 \ 6(2) \\ C(27) & 0 \ 9388(19) & 0 \ 5548(4) & 0 \ 3226(7) & 5 \ 1(3) \\ C(20) & 0 \ 798(19) & 0 \ 6033(4) & 0 \ 4748(9) & 5 \ 1(3) \\ C(210) & 0 \ 7089(19) & 0 \ 6033(4) & 0 \ 4536(9) & 5 \ 0(3) \\ \end{array}$	$\dot{O}(11)$	0 6954(14)	0 1735(3)	0 0553(7)	6 4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(12)	1 0801 (17)	0 1995(4)	0 2857(8)	4 3(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(12)	1 1931(15)	0.1745(4)	0 3396(7)	7 0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(13)	0 6972(17)	0 2367(4)	0 2441(8)	4 4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(13)	0 5588(14)	0 2354(4)	0 2684(7)	6 4(2)
$\begin{array}{cccccc} C(1) & 1 1538(13) & 0 2364(3) & 0 0799(6) & 5 6(2) \\ C(15) & 1 2157(18) & 0 3293(4) & 0 1754(8) & 4 5(2) \\ O(15) & 1 3812(14) & 0 3423(3) & 0 1978(6) & 6 4(2) \\ C(16) & 0 7671(21) & 0 3127(5) & 0 0009(10) & 6 1(3) \\ C(17) & 0 6597(19) & 0 3199(4) & 0 0644(9) & 5 2(3) \\ C(18) & 0.7335(18) & 0 3610(4) & 0.1136(8) & 4 6(2) \\ C(19) & 0 8829(18) & 0 3779(4) & 0.0822(8) & 4 6(2) \\ C(110) & 0 9003(22) & 0 3470(5) & 0 0077(11) & 6 6(3) \\ \hline \\ Molekul 2 \\ Fe(21) & 0 5951(2) & 0.48275(5) & 0 2678(1) & a \\ Fe(22) & 0 66483(2) & 0 56752(6) & 0 3258(1) & a \\ Fe(22) & 0 66411(4) & 0 54102(9) & 0 1897(2) & a \\ C(211) & 0 8924(19) & 0 5434(5) & 0 1599(9) & 5 4(3) \\ C(212) & 0 4771(19) & 0 5608(4) & 0 0776(9) & 5 3(3) \\ C(21) & 0 5743(21) & 0 4420(5) & 0 3475(10) & 6 2(3) \\ O(21) & 0 5647(17) & 0 4130(4) & 0 4017(8) & 8 4(3) \\ C(22) & 0 4018(19) & 0 4653(5) & 0 1713(10) & 5 4(3) \\ O(22) & 0 2643(17) & 0 4598(4) & 0 2787(8) & 4 4(2) \\ O(23) & 0 9807(15) & 0 4432(3) & 0 2810(7) & 6 4(2) \\ C(24) & 0 4618(16) & 0 5198(4) & 0 3321(8) & 3 8(2) \\ O(24) & 0.3338(13) & 0 5138(3) & 0.3698(6) & 5 4(2) \\ C(25) & 0 2972(14) & 0 6203(3) & 0 2266(7) & 6 3(2) \\ C(26) & 0 7941(18) & 0 5603(4) & 0 4778(9) & 4 6(2) \\ C(27) & 0 9368(18) & 0 5598(4) & 0 3768(9) & 5 1(3) \\ C(29) & 0 7993(19) & 0 6255(4) & 0 3921(9) & 5 1(3) \\ C(29) & 0 7993(19) & 0 6255(4) & 0 3921(9) & 5 1(3) \\ C(210) & 0 7089(19) & 0 6034(4) & 0 4536(9) & 5 0(3) \\ \end{array}$	C(14)	1 0612(16)	0 2528(4)	0.1261(7)	3 8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(14)	1 1538(13)	0 2364(3)	0 0799(6)	56(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(15)	1 2157(18)	0 3293(4)	0 1754(8)	4 5(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(15)	1 3812(14)	0 3423(3)	0 1978(6)	6 4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(16)	0 7671(21)	0 3127(5)	0 0009(10)	6 1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\hat{C}(17)$	0 6597(19)	0 3199(4)	0 0644(9)	5 2(3)
$\begin{array}{cccccc} C(19) & 0.8829(18) & 0.3779(4) & 0.0822(8) & 4.6(2) \\ C(110) & 0.9003(22) & 0.3470(5) & 0.0077(11) & 6.6(3) \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	C(18)	0.7335(18)	0 3610(4)	0.1136(8)	46(2)
$\begin{array}{cccccc} C(110) & 0 \ 9003(22) & 0 \ 3470(5) & 0 \ 0077(11) & 6 \ 6(3) \\ \hline \\ Molekul 2 \\ Fe(21) & 0 \ 5951(2) & 0.48275(5) & 0 \ 2678(1) & a \\ Fe(22) & 0 \ 6483(2) & 0 \ 56752(6) & 0 \ 3258(1) & a \\ P(2) & 0 \ 6611(4) & 0 \ 54102(9) & 0 \ 1897(2) & a \\ C(211) & 0 \ 8924(19) & 0 \ 5434(5) & 0 \ 1599(9) & 5 \ 4(3) \\ C(212) & 0 \ 4771(19) & 0 \ 5608(4) & 0 \ 0776(9) & 5 \ 3(3) \\ C(21) & 0 \ 5743(21) & 0 \ 4420(5) & 0 \ 3475(10) & 6 \ 2(3) \\ O(21) & 0 \ 5647(17) & 0 \ 4130(4) & 0 \ 4017(8) & 8 \ 4(3) \\ C(22) & 0 \ 4018(19) & 0 \ 4653(5) & 0 \ 1713(10) & 5 \ 4(3) \\ O(22) & 0 \ 2643(17) & 0 \ 4542(4) & 0 \ 1034(8) & 8 \ 0(3) \\ C(23) & 0 \ 8337(18) & 0 \ 4598(4) & 0 \ 2787(8) & 4 \ 4(2) \\ O(23) & 0 \ 9807(15) & 0 \ 4432(3) & 0 \ 2810(7) & 6 \ 4(2) \\ C(24) & 0 \ 4618(16) & 0 \ 5198(4) & 0 \ 3321(8) & 3 \ 8(2) \\ O(24) & 0 \ 3338(13) & 0 \ 5138(3) & 0 \ 3698(6) & 5 \ 4(2) \\ C(25) & 0 \ 4420(18) & 0 \ 5988(4) & 0 \ 2266(7) & 6 \ 3(2) \\ C(26) & 0 \ 7941(18) & 0 \ 5603(4) & 0 \ 4748(9) & 4 \ 6(2) \\ C(27) & 0 \ 9368(18) & 0 \ 5548(4) & 0 \ 4256(9) & 4 \ 9(2) \\ C(28) & 0 \ 9388(19) & 0 \ 5954(4) & 0 \ 3921(9) & 5 \ 1(3) \\ C(210) & 0 \ 7089(19) & 0 \ 6034(4) & 0 \ 4536(9) & 5 \ 0(3) \\ \end{array}$	C(19)	0 8829(18)	0 3779(4)	0.0822(8)	46(2)
Molekul 2Fe(21) $0.5951(2)$ $0.48275(5)$ $0.2678(1)$ "Fe(22) $0.6483(2)$ $0.56752(6)$ $0.3258(1)$ "P(2) $0.6611(4)$ $0.54102(9)$ $0.1897(2)$ "C(211) $0.8924(19)$ $0.5434(5)$ $0.1599(9)$ $5.4(3)$ C(212) $0.4771(19)$ $0.5608(4)$ $0.0776(9)$ $5.3(3)$ C(21) $0.5743(21)$ $0.4420(5)$ $0.3475(10)$ $6.2(3)$ $0(21)$ $0.5647(17)$ $0.4130(4)$ $0.4017(8)$ $8.4(3)$ C(22) $0.4018(19)$ $0.4653(5)$ $0.1713(10)$ $5.4(3)$ $O(22)$ $0.2643(17)$ $0.4542(4)$ $0.1034(8)$ $8.0(3)$ C(23) $0.8337(18)$ $0.4598(4)$ $0.2787(8)$ $4.4(2)$ $O(23)$ $0.9807(15)$ $0.4432(3)$ $0.2810(7)$ $6.4(2)$ $C(24)$ $0.4618(16)$ $0.5198(4)$ $0.3321(8)$ $3.8(2)$ $O(24)$ $0.3338(13)$ $0.5988(4)$ $0.2652(9)$ $4.6(2)$ $O(25)$ $0.2972(14)$ $0.6203(3)$ $0.2266(7)$ $6.3(2)$ C(26) $0.7941(18)$ $0.5603(4)$ $0.4748(9)$ $4.6(2)$ $C(27)$ $0.9368(18)$ $0.5548(4)$ $0.4256(9)$ $4.9(2)$ C(28) $0.9388(19)$ $0.5954(4)$ $0.3768(9)$ $5.1(3)$ $C(29)$ $0.7993(19)$ $0.6255(4)$ $0.3921(9)$ $5.1(3)$ $C(210)$ $0.7089(19)$ $0.6034(4)$ $0.4536(9)$ $5.0(3)$	C(110)	0 9003(22)	0 3470(5)	0 0077(11)	6 6(3)
$\begin{array}{c ccccc} Motekul 2 \\ Fe(21) & 0 5951(2) & 0.48275(5) & 0 2678(1) & a \\ Fe(22) & 0 6483(2) & 0 56752(6) & 0 3258(1) & a \\ P(2) & 0 6611(4) & 0 54102(9) & 0 1897(2) & a \\ C(211) & 0 8924(19) & 0 5434(5) & 0 1599(9) & 5 4(3) \\ C(212) & 0 4771(19) & 0 5608(4) & 0 0776(9) & 5 3(3) \\ C(21) & 0 5743(21) & 0 4420(5) & 0 3475(10) & 6 2(3) \\ O(21) & 0 5647(17) & 0 4130(4) & 0 4017(8) & 8 4(3) \\ C(22) & 0 4018(19) & 0 4653(5) & 0 1713(10) & 5 4(3) \\ O(22) & 0 2643(17) & 0 4542(4) & 0 1034(8) & 8 0(3) \\ C(23) & 0 8337(18) & 0 4598(4) & 0 2787(8) & 4 4(2) \\ O(23) & 0 9807(15) & 0 4432(3) & 0 2810(7) & 6 4(2) \\ C(24) & 0 4618(16) & 0 5198(4) & 0 3321(8) & 3 8(2) \\ O(24) & 0 .3338(13) & 0 5138(3) & 0 .3698(6) & 5 4(2) \\ C(25) & 0 4420(18) & 0 5988(4) & 0 2266(7) & 6 3(2) \\ C(26) & 0 7941(18) & 0 5603(4) & 0 4748(9) & 4 6(2) \\ C(27) & 0 9368(18) & 0 5548(4) & 0 4256(9) & 4 9(2) \\ C(28) & 0 9388(19) & 0 5954(4) & 0 3768(9) & 5 1(3) \\ C(29) & 0 7993(19) & 0 6255(4) & 0 3921(9) & 5 1(3) \\ C(210) & 0 7089(19) & 0 6034(4) & 0 4536(9) & 5 0(3) \\ \end{array}$	M-1-1-12				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Molekul Z	0.5051(2)	0.48275(5)	0.2678(1)	a
$\begin{array}{ccccccc} Fe(22) & 0.6483(2) & 0.5373(0) & 0.532(0) & 0.532(0) \\ P(2) & 0.6611(4) & 0.54102(9) & 0.1897(2) & " \\ C(211) & 0.8924(19) & 0.5434(5) & 0.1599(9) & 5.4(3) \\ C(212) & 0.4771(19) & 0.5608(4) & 0.0776(9) & 5.3(3) \\ C(21) & 0.5743(21) & 0.4420(5) & 0.3475(10) & 6.2(3) \\ O(21) & 0.5647(17) & 0.4130(4) & 0.4017(8) & 8.4(3) \\ C(22) & 0.4018(19) & 0.4653(5) & 0.1713(10) & 5.4(3) \\ O(22) & 0.2643(17) & 0.4542(4) & 0.1034(8) & 8.0(3) \\ C(23) & 0.8337(18) & 0.4598(4) & 0.2787(8) & 4.4(2) \\ O(23) & 0.9807(15) & 0.4432(3) & 0.2810(7) & 6.4(2) \\ O(24) & 0.4518(16) & 0.5198(4) & 0.3321(8) & 3.8(2) \\ O(24) & 0.3338(13) & 0.5138(3) & 0.3698(6) & 5.4(2) \\ C(25) & 0.4420(18) & 0.5988(4) & 0.2652(9) & 4.6(2) \\ O(25) & 0.2972(14) & 0.6203(3) & 0.2266(7) & 6.3(2) \\ C(26) & 0.7941(18) & 0.5603(4) & 0.4748(9) & 4.6(2) \\ C(27) & 0.9368(18) & 0.5548(4) & 0.4256(9) & 4.9(2) \\ C(28) & 0.9388(19) & 0.5954(4) & 0.3768(9) & 5.1(3) \\ C(29) & 0.7993(19) & 0.6255(4) & 0.3921(9) & 5.1(3) \\ C(210) & 0.7089(19) & 0.6034(4) & 0.4536(9) & 5.0(3) \\ \end{array}$	Fe(21)	0.5551(2)	0.46275(5)	0 2078(1)	a
$\begin{array}{ccccccc} P(2) & 0.0611(4) & 0.54102(9) & 0.1637(2) \\ C(211) & 0.8924(19) & 0.5434(5) & 0.1599(9) & 5.4(3) \\ C(212) & 0.4771(19) & 0.5608(4) & 0.0776(9) & 5.3(3) \\ C(21) & 0.5743(21) & 0.4420(5) & 0.3475(10) & 6.2(3) \\ O(21) & 0.5647(17) & 0.4130(4) & 0.4017(8) & 8.4(3) \\ C(22) & 0.4018(19) & 0.4653(5) & 0.1713(10) & 5.4(3) \\ O(22) & 0.2643(17) & 0.4542(4) & 0.1034(8) & 8.0(3) \\ C(23) & 0.8337(18) & 0.4598(4) & 0.2787(8) & 4.4(2) \\ O(23) & 0.9807(15) & 0.4432(3) & 0.2810(7) & 6.4(2) \\ C(24) & 0.4618(16) & 0.5198(4) & 0.3321(8) & 3.8(2) \\ O(24) & 0.3338(13) & 0.5138(3) & 0.3698(6) & 5.4(2) \\ C(25) & 0.4420(18) & 0.5988(4) & 0.2652(9) & 4.6(2) \\ O(25) & 0.2972(14) & 0.6203(3) & 0.2266(7) & 6.3(2) \\ C(26) & 0.7941(18) & 0.5603(4) & 0.4748(9) & 4.6(2) \\ C(27) & 0.9368(18) & 0.5548(4) & 0.4256(9) & 4.9(2) \\ C(28) & 0.9388(19) & 0.5954(4) & 0.3768(9) & 5.1(3) \\ C(29) & 0.7993(19) & 0.6255(4) & 0.3921(9) & 5.1(3) \\ C(210) & 0.7089(19) & 0.6034(4) & 0.4536(9) & 5.0(3) \\ \end{array}$	Fe(22)	0.0463(2)	0.56752(0)	0.3238(1) 0.1807(2)	a
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P(2)	0.0011(4)	0.54102(9)	0.1697(2)	5 4(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(211)	0.6924(19)	0.5454(5)	0 1333(3)	5 4 (5)
$\begin{array}{cccccc} C(21) & 0.5743(21) & 0.4420(5) & 0.3475(10) & 6.2(3) \\ O(21) & 0.5647(17) & 0.4130(4) & 0.4017(8) & 8.4(3) \\ C(22) & 0.4018(19) & 0.4653(5) & 0.1713(10) & 5.4(3) \\ O(22) & 0.2643(17) & 0.4542(4) & 0.1034(8) & 8.0(3) \\ C(23) & 0.8337(18) & 0.4598(4) & 0.2787(8) & 4.4(2) \\ O(23) & 0.9807(15) & 0.4432(3) & 0.2810(7) & 6.4(2) \\ C(24) & 0.4618(16) & 0.5198(4) & 0.3321(8) & 3.8(2) \\ O(24) & 0.3338(13) & 0.5138(3) & 0.3698(6) & 5.4(2) \\ C(25) & 0.4420(18) & 0.5988(4) & 0.2652(9) & 4.6(2) \\ O(25) & 0.2972(14) & 0.6203(3) & 0.2266(7) & 6.3(2) \\ C(26) & 0.7941(18) & 0.5603(4) & 0.4748(9) & 4.6(2) \\ C(27) & 0.9368(18) & 0.5548(4) & 0.4256(9) & 4.9(2) \\ C(28) & 0.9388(19) & 0.5954(4) & 0.3768(9) & 5.1(3) \\ C(29) & 0.7993(19) & 0.6255(4) & 0.3921(9) & 5.1(3) \\ C(210) & 0.7089(19) & 0.6034(4) & 0.4536(9) & 5.0(3) \\ \end{array}$	C(212)	04//1(19)	0 3008(4)	00770(9)	5 5(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(21)	0 5743(21)	0 4420(5)	0 3475(10)	6 2(3)
$\begin{array}{ccccccc} C(22) & 0 \ 4018(19) & 0 \ 4653(5) & 0 \ 1713(10) & 5 \ 4(3) \\ O(22) & 0 \ 2643(17) & 0 \ 4542(4) & 0 \ 1034(8) & 8 \ 0 \ (3) \\ C(23) & 0 \ 8337(18) & 0 \ 4598(4) & 0 \ 2787(8) & 4 \ 4(2) \\ O(23) & 0 \ 9807(15) & 0 \ 4432(3) & 0 \ 2810(7) & 6 \ 4(2) \\ C(24) & 0 \ 4618(16) & 0 \ 5198(4) & 0 \ 3321(8) & 3 \ 8(2) \\ O(24) & 0 \ 3338(13) & 0 \ 5138(3) & 0 \ 3698(6) & 5 \ 4(2) \\ C(25) & 0 \ 4420(18) & 0 \ 5988(4) & 0 \ 2652(9) & 4 \ 6(2) \\ O(25) & 0 \ 2972(14) & 0 \ 6203(3) & 0 \ 2266(7) & 6 \ 3(2) \\ C(26) & 0 \ 7941(18) & 0 \ 5603(4) & 0 \ 4748(9) & 4 \ 6(2) \\ C(27) & 0 \ 9368(18) & 0 \ 5548(4) & 0 \ 4256(9) & 4 \ 9(2) \\ C(28) & 0 \ 9388(19) & 0 \ 5954(4) & 0 \ 3768(9) & 5 \ 1(3) \\ C(29) & 0 \ 7993(19) & 0 \ 6255(4) & 0 \ 3921(9) & 5 \ 1(3) \\ C(210) & 0 \ 7089(19) & 0 \ 6034(4) & 0 \ 4536(9) & 5 \ 0(3) \\ \end{array}$	O(21)	0 5647(17)	0 41 30(4)	0 4017(8)	8 4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(22)	0 4018(19)	0 4653(5)	0 1713(10)	5 4(3)
$\begin{array}{ccccccc} C(23) & 0 \ 8337(18) & 0 \ 4598(4) & 0 \ 2787(8) & 4 \ 4(2) \\ O(23) & 0 \ 9807(15) & 0 \ 4432(3) & 0 \ 2810(7) & 6 \ 4(2) \\ C(24) & 0 \ 4618(16) & 0 \ 5198(4) & 0 \ 3321(8) & 3 \ 8(2) \\ O(24) & 0 \ 3338(13) & 0 \ 5138(3) & 0 \ 3698(6) & 5 \ 4(2) \\ C(25) & 0 \ 4420(18) & 0 \ 5988(4) & 0 \ 2652(9) & 4 \ 6(2) \\ O(25) & 0 \ 2972(14) & 0 \ 6203(3) & 0 \ 2266(7) & 6 \ 3(2) \\ C(26) & 0 \ 7941(18) & 0 \ 5603(4) & 0 \ 4748(9) & 4 \ 6(2) \\ C(27) & 0 \ 9368(18) & 0 \ 5548(4) & 0 \ 4256(9) & 4 \ 9(2) \\ C(28) & 0 \ 9388(19) & 0 \ 5954(4) & 0 \ 3768(9) & 5 \ 1(3) \\ C(29) & 0 \ 7993(19) & 0 \ 6255(4) & 0 \ 3921(9) & 5 \ 1(3) \\ C(210) & 0 \ 7089(19) & 0 \ 6034(4) & 0 \ 4536(9) & 5 \ 0(3) \\ \end{array}$	O(22)	0 2643(17)	0 4542(4)	0 1034(8)	80(3)
$\begin{array}{ccccccc} O(23) & 0 \ 9807(15) & 0 \ 4432(3) & 0 \ 2810(7) & 6 \ 4(2) \\ C(24) & 0 \ 4618(16) & 0 \ 5198(4) & 0 \ 3321(8) & 3 \ 8(2) \\ O(24) & 0.3338(13) & 0 \ 5138(3) & 0.3698(6) & 5 \ 4(2) \\ C(25) & 0 \ 4420(18) & 0 \ 5988(4) & 0 \ 2652(9) & 4 \ 6(2) \\ O(25) & 0 \ 2972(14) & 0 \ 6203(3) & 0 \ 2266(7) & 6 \ 3(2) \\ C(26) & 0 \ 7941(18) & 0 \ 5603(4) & 0 \ 4748(9) & 4 \ 6(2) \\ C(27) & 0 \ 9368(18) & 0 \ 5548(4) & 0 \ 4256(9) & 4 \ 9(2) \\ C(28) & 0 \ 9388(19) & 0 \ 5954(4) & 0 \ 3768(9) & 5 \ 1(3) \\ C(29) & 0 \ 7993(19) & 0 \ 6255(4) & 0 \ 3921(9) & 5 \ 1(3) \\ C(210) & 0 \ 7089(19) & 0 \ 6034(4) & 0 \ 4536(9) & 5 \ 0(3) \\ \end{array}$	C(23)	0 8337(18)	0 4598(4)	0 2787(8)	4 4(2)
$\begin{array}{cccccc} C(24) & 0.4618(16) & 0.5198(4) & 0.3321(8) & 3.8(2) \\ O(24) & 0.3338(13) & 0.5138(3) & 0.3698(6) & 5.4(2) \\ C(25) & 0.4420(18) & 0.5988(4) & 0.2652(9) & 4.6(2) \\ O(25) & 0.2972(14) & 0.6203(3) & 0.2266(7) & 6.3(2) \\ C(26) & 0.7941(18) & 0.5603(4) & 0.4748(9) & 4.6(2) \\ C(27) & 0.9368(18) & 0.5548(4) & 0.4256(9) & 4.9(2) \\ C(28) & 0.9388(19) & 0.5954(4) & 0.3768(9) & 5.1(3) \\ C(29) & 0.7993(19) & 0.6255(4) & 0.3921(9) & 5.1(3) \\ C(210) & 0.7089(19) & 0.6034(4) & 0.4536(9) & 5.0(3) \\ \end{array}$	O(23)	0 9807(15)	0 4432(3)	0 2810(7)	6 4(2)
$\begin{array}{cccccccc} O(24) & 0.3338(13) & 0.5138(3) & 0.3698(6) & 5 \ 4(2) \\ C(25) & 0.4420(18) & 0.5988(4) & 0.2652(9) & 4 \ 6(2) \\ O(25) & 0.2972(14) & 0.6203(3) & 0.2266(7) & 6 \ 3(2) \\ C(26) & 0.7941(18) & 0.5603(4) & 0.4748(9) & 4 \ 6(2) \\ C(27) & 0.9368(18) & 0.5548(4) & 0.4256(9) & 4 \ 9(2) \\ C(28) & 0.9388(19) & 0.5954(4) & 0.3768(9) & 5 \ 1(3) \\ C(29) & 0.7993(19) & 0.6255(4) & 0.3921(9) & 5 \ 1(3) \\ C(210) & 0.7089(19) & 0.6034(4) & 0.4536(9) & 5 \ 0(3) \\ \end{array}$	C(24)	0 4618(16)	0 5198(4)	0 3321(8)	3 8(2)
$\begin{array}{ccccccc} C(25) & 0.4420(18) & 0.5988(4) & 0.2652(9) & 4.6(2) \\ O(25) & 0.2972(14) & 0.6203(3) & 0.2266(7) & 6.3(2) \\ C(26) & 0.7941(18) & 0.5603(4) & 0.4748(9) & 4.6(2) \\ C(27) & 0.9368(18) & 0.5548(4) & 0.4256(9) & 4.9(2) \\ C(28) & 0.9388(19) & 0.5954(4) & 0.3768(9) & 5.1(3) \\ C(29) & 0.7993(19) & 0.6255(4) & 0.3921(9) & 5.1(3) \\ C(210) & 0.7089(19) & 0.6034(4) & 0.4536(9) & 5.0(3) \\ \end{array}$	O(24)	0.3338(13)	0 5138(3)	0.3698(6)	5 4(2)
O(25)0 2972(14)0 6203(3)0 2266(7)6 3(2)C(26)0 7941(18)0 5603(4)0 4748(9)4 6(2)C(27)0 9368(18)0 5548(4)0 4256(9)4 9(2)C(28)0 9388(19)0 5954(4)0 3768(9)5 1(3)C(29)0 7993(19)0 6255(4)0 3921(9)5 1(3)C(210)0 7089(19)0 6034(4)0 4536(9)5 0(3)	C(25)	0 4420(18)	0 5988(4)	0 2652(9)	4 6(2)
C(26)0 7941(18)0 5603(4)0 4748(9)4 6(2)C(27)0 9368(18)0 5548(4)0 4256(9)4 9(2)C(28)0 9388(19)0 5954(4)0 3768(9)5 1(3)C(29)0 7993(19)0 6255(4)0 3921(9)5 1(3)C(210)0 7089(19)0 6034(4)0 4536(9)5 0(3)	O(25)	0 2972(14)	0 6203(3)	0 2266(7)	6 3(2)
C(27)0 9368(18)0 5548(4)0 4256(9)4 9(2)C(28)0 9388(19)0 5954(4)0 3768(9)5 1(3)C(29)0 7993(19)0 6255(4)0 3921(9)5 1(3)C(210)0 7089(19)0 6034(4)0 4536(9)5 0(3)	C(26)	0 7941(18)	0 5603(4)	0 4748(9)	4 6(2)
C(28)0 9388(19)0 5954(4)0 3768(9)5 1(3)C(29)0 7993(19)0 6255(4)0 3921(9)5 1(3)C(210)0 7089(19)0 6034(4)0 4536(9)5 0(3)	C(27)	0 9368(18)	0 5548(4)	0 4256(9)	4 9(2)
C(29) 0 7993(19) 0 6255(4) 0 3921(9) 5 1(3) C(210) 0 7089(19) 0 6034(4) 0 4536(9) 5 0(3)	C(28)	0 9388(19)	0 5954(4)	0 3768(9)	51(3)
C(210) 0 7089(19) 0 6034(4) 0 4536(9) 5 0(3)	C(29)	0 7993(19)	0 6255(4)	0 3921(9)	5 1(3)
	C(210)	0 7089(19)	0 6034(4)	0 4536(9)	5 0(3)

a	Die	anisotropen	Temperaturfaktoren	sınd

	β11	β ₂₂	β ₃₃	β ₁₂	β_{13}	β ₂₃
Fe(11)	0 0172(4)	0 0009(0)	0 0038(1)	-00003(1)	0 0027(1)	-0 0001(0)
Fe(12)	0 0168(4)	0 0009(0)	0 0032(1)	0 0002(1)	0.0021(1)	0.0001(0)
P(1)	0 0161(6)	0 0010(0)	0 0031(1)	-0 0001(1)	0.0025(2)	-0.0001(1)
Fe(21)	0 0233(4)	0 0009(0)	0 0042(1)	-00003(1)	0 0036(1)	-0 0001(0)
Fe(22)	0 0162(3)	0 0008(0)	0 0037(1)	0 0001(1)	0 0022(1)	0 0000(0)
P(2)	0 0189(7)	0 0011(1)	0 0037(1)	0 0004(1)	0 0027(3)	0 0002(1)

TABELLE 2

ATOMABSTÄNDE IN (I)

Bindung	Abstand (Å)	
	Molekül 1	Molekül 2
Fe(1)-Fe(2)	2 615(2)	2 638(2)
Fe(1)-P	2 197(3)	2 209(3)
Fe(2)-P	2 184(3)	2.183(3)
Fe(1)-C(1)	1 75(1)	1 73(2)
Fe(1) - C(2)	1 73(1)	1 70(1)
Fe(1) - C(3)	1 78(1)	1 79(1)
Fe(1)-C(4)	1 92(1)	1 90(1)
Fe(2)-C(4)	1 95(1)	1 96(1)
Fe(2)-C(5)	1 69(1)	1 72(1)
Fe(2)-C(6)	2 09(1)	2 10(1)
Fe(2) - C(7)	2 15(1)	2 13(1)
Fe(2) - C(8)	2 13(1)	2 12(1)
Fe(2)-C(9)	2 09(1)	2 09(1)
Fe(2)-C(10)	2 09(1)	2 08(1)
P-C(11)	1 82(1)	1 84(1)
P-C(12)	1 85(1)	1 83(1)
C(1)-O(1)	1 17(1)	1 19(2)
C(2) - O(2)	1 18(1)	1 19(1)
C(3)-O(3)	1 16(1)	1 15(1)
C(4)-O(4)	1 20(1)	1 22(1)
C(5)-O(5)	1.18(1)	1 18(1)
C(6)-C(7)	1 41(2)	1 44(2)
C(7) - C(8)	1 43(2)	1 40(2)
C(8)-C(9)	1 39(2)	1 41(2)
C(9)-C(10)	1 46(2)	1 43(2)
C(10)-C(6)	1 37(2)	1 40(2)

zu beschreiben. So gehen von Fe(1) zwar sechs Bindungen aus, doch ist Fe(1) auch nicht annähernd oktaedrisch konfiguriert. Besonders die Winkel, deren einer Schenkel die Fe(1)-Fe(2)-Bindung ist, weichen zu stark von 90 bzw. 180° ab. Vernachlässigt man die Metall-Metall-Bindung, dann lässt sich die Geometrie von Fe(1) grob durch eine trigonale Bipyramide beschreiben, wobei C(3) und C(4) die axialen Liganden sind.

Der geringe stereochemische Einfluss der Metall-Metall-Bindung wird deutlicher an Fe(2) Denn wenn man Fe(1) vernachlässigt, dann hat Fe(2) die typische "Klavierstuhl"-Geometrie, für die $C_5H_5Mn(CO)_3$ ³ der einfachste Vertreter ist. So bilden C(4), C(5) und P an Fe(2) praktisch rechte Winkel aus, die Normale auf dem Mittelpunkt des Cyclopentadienylrings zeigt auf Fe(2), und die Winkel dieser Normalen mit C(4), C(5) und P sind sehr ähnlich (vgl. Tabelle 3). Fe(1) besetzt an Fe(2) keine typische Koordinationsstelle, es passt sich zwischen C(4) und P ein, mit denen es wiederum sehr kleine Winkel bildet.

Die terminalen Carbonylgruppen zeigen normales Verhalten. Sie sind nicht vollständig linear, doch Bindungslängen und Winkel bewegen sich in akzeptierten

TABELLE 3

BINDUNGSWINKEL IN (I) (°)

Winkel	Molekul 1	Molekul 2	Winkel	Molekul 1	Molekiıl 2
P-Fe(1)-Fe(2)	53 1(1)	52 6(1)	C(11)-P-Fe(1)	122 2(4)	121 0(4)
C(1)-Fe(1)-Fe(2)	111 1(4)	118 8(5)	C(12) - P - Fe(1)	119 4(4)	120 5(4)
C(2) - Fe(1) - Fe(2)	129 4(4)	123 3(5)	C(11) - P - Fe(2)	122 2(4)	121 3(4)
C(3) - Fe(1) - Fe(2)	111 7(4)	107 6(4)	C(12) - P - Fe(2)	119 1(4)	118 6(4)
C(4) - Fe(1) - Fe(2)	48 1 (3)	47 9(3)	C(12) - P - C(11)	100 9(5)	101 6(6)
C(1) - Fe(1) - P	161 2(4)	169 3(5)	Fe(1)-C(4)-Fe(2)	84 9(4)	86 2(4)
C(2) - Fe(1) - P	96 8(4)	93 2(5)	Fe(1)-C(1)-O(1)	176 9(1 0)	177 8(1 3)
C(3) - Fe(1) - P	89 3(4)	891(4)	Fe(1) - C(2) - O(2)	178 9(10)	178.4(1 2)
C(4) - Fe(1) - P	88 4(3)	92 1(3)	Fe(1)-C(3)-O(3)	177 2(1 0)	175 6(1 0)
C(2)-Fe(1)-C(1)	101 8(5)	97 4(6)	Fe(1) - C(4) - O(4)	140 9(9)	141 6(9)
C(3) - Fe(1) - C(1)	88 1 (5)	88 1 (6)	Fe(2) - C(4) - O(4)	134 1 (9)	132 0(9)
C(4) - Fe(1) - C(1)	85 8(5)	83 9(6)	Fe(2) - C(5) - O(5)	176 3(1 1)	177 3(10)
C(3)-Fe(1)-C(2)	106 7(4)	116 3(6)	C(6) - C(7) - C(8)	106 1 (1 1)	107 0(1 0)
C(4)-Fe(1)-C(2)	99 8(5)	101 1(5)	C(7) - C(8) - C(9)	109 4(1 0)	109 4(1 1)
C(4) - Fe(1) - C(3)	153 5(5)	142 5(5)	C(8) - C(9) - C(10)	106 8(1 1)	107 5(1 1)
P-Fe(2)-Fe(1)	53 6(1)	53 5(1)	C(9) - C(10) - C(6)	106 8(1 2)	107.7(1.1)
C(4)-Fe(2)-Fe(1)	47 1(3)	45 9(3)	C(10) - C(6) - C(7)	1108(12)	108 4(1 1)
C(5)-Fe(2)-Fe(1)	113 9(4)	109 8(4)	$Cp-Fe(2)-P^{a}$	132.4(1.2)	1301(12)
C(4) - Fe(2) - P	87 9(3)	91 1(3)	Cp-Fe(2)-C(4) ^a	125 7(1 2)	124 0(1 2)
C(5) - Fe(2) - P	87 9(4)	90 3(4)	$Cp-Fe(2)-C(5)^{a}$	122 3(1 2)	1227(12)
C(5) - Fe(2) - C(4)	87 1 (5)	86 3(5)		()	. ,
Fe(2)-P-Fe(1)	73 3(1)	73 8(1)			

^{*a*} Cp = Mittelpunkt des C₅H₅-Ringes

TABELLE 4

EBENENBERECHNUNGEN AN (I)

Definition der Ebenen $I = C_5H_5$ -Ring: II = Fe(1), Fe(2), P, III = Fe(1), Fe(2), C(4), IV = Fe(1), P, C(4), V = Fe(2), P, C(4)

Entf	ern un g	der	Atome	aus	der	Ebene	des	C_5H_5 -Ringe	es (A))
------	-----------------	-----	-------	-----	-----	-------	-----	-----------------	--------	---

Molekul 1	Molekul 2
-0 007	-0 006
-0.001	0 007
0 008	-0 006
-0011	0.002
0011	0 002
benen (°)	
128 7	138 7
124 9	134 7
ektoren und Ebener	7
88 0	88 5
456	40 7
46.1	36.9
	Molekül 1 -0007 -0001 0008 -0011 0011 benen (°) 128 7 124 9 Vektoren und Ebenen 88 0 45 6 46 1

^{*a*} Cp = Mittelpunkt des C_5H_5 -Ringes

Fe₂(CO)₅C₅H₅P(CH₃)₂

Grenzen⁴. Der C_5H_5 -Ligand ist ein einigermassen gleichseitiges Fünfeck. Seine Atome C(7) und C(8) sind etwas weiter vom Eisenatom entfernt als die anderen Ring-Kohlenstoffatome. Darin macht sich die sterische Hinderung mit der Methylgruppe C(11) des Phosphors bemerkbar.

DAS Fe-P-Fe-C-BRÜCKENSYSTEM

In (I) sind sowohl die Fe-P-Fe- als auch die Fe-C-Fe-Brücke nahezu symmetrisch. Das demonstrieren sowohl die Bindungslängen als auch die Winkel an P und C(4). Ein schwaches Indiz dafür, dass die Carbonylgruppe C(4)-O(4) etwas mehr zu Fe(1) "gehört", ergibt sich daraus, dass die Bindung Fe(1)-C(4) etwas kürzer und der Winkel Fe(1)-C(4)-O(4) etwas grösser ist als die Bindung und der Winkel mit Fe(2).

Die Bindungen von den Eisenatomen zum Brücken-C-Atom sind deutlich länger als zu den terminalen C-Atomen. Sie bewegen sich aber im normalen Rahmen für Carbonylbrücken⁵. Die Eisen-Phosphor-Bindungen mit durchschnittlich 2.194 Å sind dagegen deutlich kürzer als in anderen phosphinverbrückten zweikernigen Eisenkomplexen. In vergleichbaren Verbindungen betragen die Fe-P-Bindungslängen in [JFe(CO)₃P(CH₃)₂]₂ 2.29-2.31⁶, in [(CO)₄Fe-P(CH₃)₂]₂ 2.26⁷, in [(CO)₄Fe- μ -P-(C₆H₅)₂PdCl]₂ 2.24⁸ und in Rh[P(C₆H₅)₂Fe(CO)₂ C₅H₅]₂ 2.24 Å⁹.

Wie in den meisten doppelt verbrückten Zweikernkomplexen¹⁰ ist auch in (I) der Vierring aus den zwei Metall- und den zwei Brückenatomen geknickt. Der Diederwinkel bewegt sich sowohl an der Fe(1)–Fe(2)-Bindung als auch an der P–C(4)-Linie um 130°. Der Vergleich vieler solcher Komplexe hat gezeigt¹⁰, dass die Knickung des Brückensystems und die Metall-Metall-Bindung wechselseitig voneinander abhängen. Je kürzer die Metall-Metall-Bindung (s.u.) ist, desto spitzer werden die beiden Diederwinkel. Im Vergleich zu den Extremen $[(NO)_2FeJ]_2^{10}$ (Fe–Fe 3.05 Å, Diederwinkel 180°) und $[(CO)_3FeNH_2]_2^{11}$ (Fe–Fe 2.40 Å, Diederwinkel 78°) bewegt sich (I) etwa in der Mitte.

Eine Konsequenz der Knickung ist es, dass die Summe der Valenzwinkel an den vier Brückenatomen kleiner als 360° wird. Dabei sind in (I) wie in den vergleich-

METALLORGANISCHE LEWIS-BASEN XVIII

baren Komplexen¹⁰ die Winkel an den Brückenatomen sehr spitz und wesentlich kleiner als an den Metallatomen. Da die Kristallstruktur von $[(CO)_3FeP(CH_3)_2]_2$ noch unbekannt ist, ist (I) am ehesten mit $[C_5H_5CoP(C_6H_5)_2]_2^{12}$ zu vergleichen. Die Strukturähnlichkeit ist augenfällig: Co-Co 2.56, Co-P 2.16 Å, Winkel am Co 84°, Winkel am P 72°. Sie beweist, dass in Komplexen dieser Art weniger elektronische Einflüsse der Metalle und der Liganden als geometrische Faktoren die Struktur bestimmen, wobei der entscheidende geometrische Einfluss die nur wenig variable Metall-Brückenatom-Bindungslänge ist (s.u.).

Die Edelgasregel verlangt, dass in (I) die P-Fe(1)-Bindung eine koordinative Bindung ist, damit beide Eisenatome die Kryptonkonfiguration erreichen. Die Gleichheit der Fe-P-Bindungslängen zeigt erneut¹³, dass die Bindungslängen koordinative und normale kovalente Bindungen nicht voneinander unterscheiden. Da die Kristallographie Bindungspolaritäten nicht sichtbar macht, kann aus der Molekülstruktur von (I) auch keine Aussage zum koordinativen Charakter der einzelnen Fe-P-Bindungen gemacht werden

Da (I) und FeMn(CO)₈P(CH₃)₂ isoelektronisch sind, wäre für (I) auch analog Ref. 2 eine Struktur ohne Brücken-Carbonyl denkbar. Dabei wäre die P–Fe(2)-Bindung koordinativ und C(4)–O(4) wäre nur an Fe(1) gebunden. Auf diese Art würden auch beide Eisenatome die Edelgasschale erreichen. Die Tatsache, dass diese Möglichkeit nicht verwirklicht wird, beweist wiederum den Einfluss sterischer Faktoren. Denn in dieser hypothetischen Struktur wäre Fe(2) nur sehr locker von Liganden umgeben, während an Fe(1) sterische Häufung auftreten würde. In (I) dagegen sind die Liganden ohne Zwang gleichmässig dicht um den Eisen-Kern verteilt.

DIE EISEN-EISEN-BINDUNG

Die durchschnittliche Eisen-Eisen-Bindungslänge in (I) beträgt 2626 Å Sie ist vergleichbar der Kobalt-Kobalt-Bindungslänge von 2.56 Å in $[C_5H_5COP-(C_6H_5)_2]_2^{12}$, dem Komplex, dessen Geometrie am ehesten der von (I) ähnelt. Auch $[(CO)_3Fe-SC_2H_5]_2^{14}$ ist in Bezug auf das viergliedrige Brückensystem mit (I) zu vergleichen. Dementsprechend kommt sein Fe-Fe-Abstand mit 2.54 Å dem von (I) nahe.

Einen typischen Atomabstand für eine Eisen-Eisen-Bindung gibt es dagegen nicht. Die bekannten Bindungslängen rangieren von 2.39 bis 3.09 Å^5 . Dieser grosse Bereich für eine Einfachbindung wurde bisher nur beim Eisen beobachtet. Er steht im Kontrast zu den Eisen-Phosphor-Bindungslängen, die um maximal 0.1 Å schwanken⁶⁻⁹. Gleichzeitig geht daraus aber auch die Abhängigkeit der Eisen-Eisen-Abstände von der Geometrie des verbrückenden Systems hervor: Die Eisen-Brückenatom-Bindungslänge bestimmt den Metall-Metall-Abstand. Das verdeutlicht Tabelle 5, die basenverbrückte Zweikernkomplexe des Eisens mit Brückenatomen aus vier verschiedenen Perioden gegenüberstellt.

Der Komplex (I) fügt sich damit zwanglos in die Reihe der Verbindungen ein, deren Metall-Metall-Abstand eine lineare Funktion des Metall-Brückenatom-Abstandes ist. Die am wenigsten variable Grösse scheint dabei der Winkel am Brükkenatom zu sein. Er bleibt konstant für alle vier Komplexe der Tabelle 5 und erzwingt eine Schwankung von über 0.6 Å für die Eisen-Eisen-Bindung.

(I) lässt sich auch zusammengesetzt denken aus je einer Hälfte der Komplexe

TABELLE 5

Komplex	В	Fe-B(Å)	Fe-Fe(Å)	Winkel an B ($^\circ$)	
$[(CO)_{3}FeNH_{2}]_{2}^{11}$	N	1 98	2 40	74	
$Fe_2(CO)_5C_5H_5P(CH_3)_2$	Р	2 19	2 63	73	
$FeMn(CO)_8As(CH_3)_2$	As	2 35	285	74	
$[(NO)_2 FeJ]_2^{10}$	J	2 58	3 05	73	

GEOMETRIE BASENVERBRÜCKTER EISEN-ZWEIKERNKOMPLEXE

 $[C_5H_5Fe(CO)_2]_2$ und $[(CO)_3FeP(CH_3)_2]_2$. Für ersteren beträgt der Eisen-Eisen-Abstand^{15,16} 2.49 bzw. 2.53 Å, für letzteren dürfte er etwa dem Wert von 2.54 Å für $[(CO)_3FeSC_2H_5]_2^{14}$ entsprechen. Die vorausgesagte Fe-Fe-Bindungslänge in (I) wäre danach 2.52 Å. Das ist 0.10 Å kürzer als der gefundene Wert, eine weitere Demonstration der Tatsache, dass Fe-Fe-Abstände in ungewöhnlicher Weise variabel sind.

Ähnlich wie in dem arsenverbrückten Zweikernkomplex FeMn(CO)₈As-(CH₃)₂² lässt sich auch in (I) die Metall-Metall-Bindung als koordinative Bindung ansehen. Bei Gültigkeit der Edelgasregel ist Fe(2) \rightarrow Fe(1) eine koordinative Bindung, wenn auch P \rightarrow Fe(2) (und nicht P \rightarrow Fe(1)) eine koordinative Bindung ist. Damit ist Fe(2) ein Donor-Ligand an Fe(1), vergleichbar einer Carbonylgruppe. Und ähnlich einer Carbonylgruppe sollte dieser "Ligand" Fe(2) dann durch Phosphine zu substituieren sein. Solch eine Substitution, die auf eine Lösung der Metall-Metall-Bindung hinausläuft, wurde an dem mit (I) verwandten Komplex Fe₂(CO)₅C₅H₅P(C₆H₅)₂ tatsächlich vollzogen¹⁷.

DANK

Wir danken der Deutschen Forschungsgemeinschaft für die Unterstützung dieser Arbeit, dem Leibnitz-Rechenzentrum der Bayerischen Akademie der Wissenschaften für Rechenzeit und Herrn Priv. Doz. Dr. G. Huttner für die Überlassung von Rechenprogrammen.

LITERATUR

- 1 W Ehrl und H Vahrenkamp, J Organometal Chem, 63 (1973) 389.
- 2 H Vahrenkamp, Chem Ber, 106 (1973) 2570.
- 3 E O Fischer und H P Fritz, Advan Inorg Chem. Radiochem, 1 (1959) 55
- 4 E W Abel und F G. A Stone, Quart Rev, 23 (1969) 325
- 5 M. I. Bruce, Organometal Chem Rev., B, 6 (1970) 937; B, 9 (1972) 53
- 6 G. R Davies, R. H B Mais, P G Owston und D T Thompson, J Chem. Soc, A, (1968) 1251.
- 7 J A J. Jarvis, R. H B. Mais, P G Owston und D. T Thompson, J Chem. Soc, A, (1968) 622
- 8 B. C Benson, R. Jackson, K K Joshi und D. T Thompson, Chem Commun, (1968) 1506
- 9 R. J. Haines, R. Mason, J. A. Zubieta und C. R. Nolte, Chem. Commun., (1972) 940
- 10 L F Dahl, E. Rudulfo de Gil und R D Feltham, J Amer Chem. Soc, 91 (1969) 1653
- 11 L F Dahl, W R. Costello und R B King, J Amer Chem. Soc., 90 (1968) 5422
- 12 J M Coleman und L. F Dahl, J Amer Chem Soc, 89 (1967) 542
- 13 H Vahrenkamp, Chem. Ber, 105 (1972) 1486
- 14 L F Dahl und C H. Wei, Inorg Chem, 2 (1963) 328
- 15 O S Mills, Acta Cryst., 11 (1958) 620
- 16 R F Bryan, P T Greene, D S Field und M. J Newlands, Chem Commun, (1969) 1477
- 17 R. J Haines und C R. Nolte, J Organometal Chem, 36 (1972) 163